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ABSTRACT 

In the course of a computer study of a new form of ball 

bearing, a curious invariance was noted.  This led to a new 

theorem in the geometry of circles.  A proof for this theorem, 

together with a useful lemma, is the subject of this Technical 

Note. 
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A NEW GEOMETRICAL THEOREM DISCOVERED WITH THE AID OF A COMPUTER 

W 3 
Let  T and V    be two circles in euclidean 3-space,  R .  Suppose there 

is a number x such that:  (1)  every point on either circle is distance x 

from exactly two points on the other circle.  We can then select a point Z 

on T and draw a zig-zag line between the two circles as follows: 

Select 2        on   Y        with   \Z      -    Z 

Select  Z   4  Z   on   T with    |z  - Z 

Select Z2    4 Zon   7        with    |?  - Z, 

= x 

=   X 

=  X 

Select  Z ,. +  Z     on   T with 
n+1     n 

Select  Z , . +  Z    on   7   with 
n+1     n 

lzn+i ~ ZJ  = x 

lZn+l ~ Zn+ll  = X 

It may happen (illustrated for the case n =  3  in Fig. 1) that Z    =  Z 

We show that if this occurs, the zig-zag line can be started at any point on 

r  and it will still close. 

This remarkable fact was observed while performing certain calculations 

about ball bearings on a computer .  The theorem bears a superficial resem- 
2 

blance to Steinerfs Porism but cannot be proved the same way. 

Condition (1) is not as formidable as it may appear.  If both circles 

lie in the same plane, with radii  r and  r and with centers separated by 

6,  elementary calculus shows that  (1)  is equivalent to the two inequalities: 

| r — r |  < x — 6 

x + 6  <  r + 7 

Thus suitable x's will exist provided the smaller circle encloses the center 

of the larger one. 



CIRCLE T 

Fig. 1.  Each straight line has length x, n = 3. 

Fig. 2.  Illustrating the notation used in the computation of f. 



The proof proceeds as follows:  Suppose for some choice of Z.,  say 

Z.  - p,  Z    = Z. . We parametrize Y    by s,  the directed arc length 
1        n+1     1 

measured from p.  Thus we can view Z.. ,  and thus Z  ,  and ultimately  t, 

the arc length from p to Z -  as functions of s.  Below we show that 

there is a smooth function f of s and t with properties: 

(i.) f(s,s)  = 1 for all s 

(ii.) fC.t) =  § 

3 
Application of a well known uniqueness theorem assures us that this ordinary 

differential equation: 

t(o)  = 0 

has only one solution.  By  (i),  t(s)  = s  is the solution.  But this implies 

that Z .-  = Z_  for all Zn. n+1     1 1 
In constructing f we will need the following lemma: 

3 
Lemma:  Let B, n, Z  and Z  be vectors in R ,  satisfying: 

(a.) |y1|  -  |y2l 

(b.) |B + yj  -  |B + y2| 

(c.) n  •  yx = n  •  y2 

(d.) y,  + y0 

Then: 

B x n  •  (y.  + yj  = 0 

Proof: If B and n are dependent the result is obvious.  If 

not, by squaring  (b)  and  (a)  and taking the difference we obtain: 

(e.) B  •  y  = B  •  y 



In conjunction with  (c) ,  (e)  shows that y-  and y« have the same ortho- 

gonal projection on the plane spanned by B and n.  By  (a)  and  (d)  the 

components of y1  and y? normal to this plane must be equal and opposite, 

so y  + y9  lies in the B,n plane.  From this the conclusion is evident. 

We can now compute  f.  We will use the following notation: 

n is the unit normal to circle T 

~      II II II II "rf 

y.  is the vector from the center of V     to Z 

y.  is the negative of the vector from the center of V     to Z. . 

A  is the vector from the center of ,r  to the center of T   . 

Figure two illustrates this notation.  Imagine a slight motion of y  along 

the circle.  Since dy1  is perpendicular to both n and y1  we can write: 

y 
dyi = n x T7T ldyil (2) 

L
 |yi'  L 

As  y1  moves,  y,  also must move, keeping 

|A + v1  +  yj = x O) 

Squaring (3) and differentiating gives: 

(A  +  yx  +  yx)  •  (dy;L  +  dyx)  =  0 (4) 

Substituting  into   (4),   (2)   and   (5)  where: 

gives: 

dy      =    ii    *    yX |dy  | (5) 

y ¥ 
(A + J)   • n x T-iT |dy   I  + (A + y)   . -a x —L- |dy |     =0 .(6) 

i \vx\      i i |?i|       i 



Thus: 

WJ   = |yxl   (A + y^)   • n x yx       ' 

Similarly, 

|dy2| ly2|   (A ^ y2)   » n x y± 

|dyj "    |y1|   (A + ^)   • n x y£ 

Multiplying  (7)  by   (8)   and using the lemma  in  the forms: 

(A + y1)   •  n x Yi    «    -    (A + yx)   •  n x y2 

(A + y2)   •  n  x ^    =    -     (A + y2)   •  ri  x y2 

gives: 

|dy2| (A + y2)   • H x f2 

|dyi| (A + yx)   • •Kx?1 

Multiplying    n    similar expressions  gives: 

dt   l^i I   (A + yn+1) - n x yn+i 
ds     Id^l      (A + yx)  • n x J^ = f(s,t) 

(7) 

Clearly if  Zn+1 »  Z^  then yn+1 = y±    and yn+1 = y^,  whence: 

f(s,s)  =  1 

This completes the proof. 

(8) 

(9) 
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